
Collaborative Modeling and Visualization of

Software Systems Using Multidimensional UML
Matej Ferenc, Ivan Polasek and Juraj Vincur

Faculty of Informatics and Information Technologies

Institute of Informatics and Software Engineering,

Slovak University of Technology in Bratislava

Ilkovičova 2, SK-84216 Bratislava 4

{xferencm, ivan.polasek, juraj.vincur}@stuba.sk

Abstract— This paper introduces our approach to a real-time

synchronous collaborative modeling of software systems using 3D

UML in a way similar to shared Google Document online with the

aim to reduce the complexity of UML models and to increase

work efficiency. In our approach, we decided to visualize the

system with 2D UML diagrams on interconnected layers contai-

ning components (in class diagrams) or use case scenarios of the

system (in sequence or activity diagrams) in 3D space. The goal of

our method is to improve user’s awareness of other developers in

a multi-user workspace, adjust redundant components and visu-

alize the history of user’s actions in the UML class diagrams.

Index Terms—3D UML, real-time synchronous collaboration,

modeling, visualization, evolution

I. INTRODUCTION

Developing complex and large-scale software systems is a

difficult and complicated process in which many people are

involved. Multiple experts with various specializations need to

collaborate concurrently in order to analyze and design the

system. Therefore, the main motivation of this paper is to

introduce and propose our approach (and coupled tool) which

supports:

 working on a model of the software system similarly to

draw.io (https://www.draw.io) or GenMyModel

(http://www.genmymodel.com) online, increasing the

productivity and work efficiency in a collaborative and

parallel modeling compared to the standard offline and

uninformed non-collaborative work,

 visualizing parallel layers (with parallel versions or

with the other collaborating components or with

particular structures, supporting other use cases) on

which other developers are working (collaborators can

work on the same layer too),

 visualizing similar parts on the other component layers

to not reinvent the wheel and reduce the vague and

redundant elements,

 reducing of the complexity of exact and large UML

models using the layers decomposing the extensive

model to the real components,

 visualizing evolution in the model and collaboration,

controlled with timeline widget as the gource system

[10] visualizing source code evolution.

II. RELATED WORK

Ellis, Gibbs, and Rein [1], describe collaboration using the

3C Collaboration Model which defines collaboration as an

interlay between coordination, communication and

cooperation. Fuks et. al. [2] later adopt this model and state that

awareness mediates and fosters all three aspects of

collaboration. This model can be used as a base for analyzing

and designing groupware. Dourish and Belloti [3] define

awareness as “an understanding of the activities of others,

which provides a context for one’s own activities.” Many

papers discuss the importance of user’s awareness of other’s in

a shared workspace [4][15][16]. Gutwin and Greenberg [4],

state that every collaborator should be intuitively aware of

present related aspects such as who is in the workspace, where

they are located, what they are working on, as well as past

related aspects such as how this artefact came to be in this state

or who made this change and when. They state that good

awareness provides the following benefits:

 collaborators will not miss a chance to collaborate or

oppositely, will not interrupt others at inappropriate

time,

 collaborator has a better contextual understanding of

where assistance is required,

 unnecessary need for communication is eliminated,

 collaborator can predict the others’ actions and

therefore make an easier decision on choosing their

next task,

 work redundancy is eliminated and division of labor is

simplified.

Based on the above, we can state that good awareness of

others and their activities increase work efficiency and

productivity in multi-user workspace. However, this does not

solve the problem of readability of complex and large-scale

UML models of software systems. Many research papers

propose that modeling and visualizing a system in 3D space

can eliminate this problem and introduce many improvements.

The idea of system modeling in three-dimensional space was

first published in 1991 as a Doctoral Dissertation by Koike [5].

He proposes that the increase in dimension enables to visualize

large number of objects and relations among them. Since then

many other papers have been published covering this topic. For

example, Casey et al. [6], propose an approach to visualizing

UML class diagrams as geon diagrams. He states that it is

easier for users to remember 3D geometrical shapes than text.

Another example is Dwyer’s [7] 3D UML visualization of a

class diagram, where he used force-directed algorithm to layout

UML class diagram in 3D space. In his visualization, he

represented standard 2D UML classes as 3D blocks, 2D

relationships as 3D connectors and enclosed UML classes

within the same UML package inside a sphere.

Another approach to 3D system visualization is by placing

standard 2D UML diagrams on multiple layers in 3D space.

Von Pilgrim and Duske [8] provide an example of this

approach in their research paper and present a 3D framework

called Gef3D. The framework enables to transform any

existing GEF-based 2D editors into 3D editors and enables to

visualize connections between 2D diagrams on layers in 3D

space. This topic is also being researched in our institute with

the aim to reduce complexity of UML models and to propose

other improvements of UML and use case modeling and visual-

ization [13][14]. For example, in their paper, Gregorovic and

Polasek [9][12] present an approach for automatic generation

of object and class UML diagrams from sequence UML

diagrams. In addition, they introduce automatic layout of UML

class diagrams in 3D space based on the class semantics.

Based on the previous examples and especially with the rise

of virtual and augmented reality, modeling systems in 3D space

seems to be the trend of how systems will be modelled in the

future.

III. OUR APPROACH

In our approach, we decided to continue visualizing the

system with 2D UML diagrams on interconnected layers (close

to the concept of 2.5D and 3D UML [8]) containing compo-

nents (in class diagrams) or use case scenarios (in sequence or

activity diagrams) of a system in 3D space. We aimed to

improve the process of UML modeling with real-time

synchronous collaboration and we have designed and

implemented a real-time collaborative 3D UML application

with many awareness features (Fig. 1).

Fig. 1. Collaborative 3D UML Application

We have also implemented an Enterprise Architect Add-in

(Fig. 2), to enable integration with EA and to enhance EA with

real-time synchronous collaboration.

Fig. 2. Enterpise Architect Add-in

Figure 3 shows the architecture of our proposed method for

collaborative 3D UML modeling. Following, the architecture’s

components are briefly described.

Fig. 3. Collaborative 3D UML Application

Relational Database – dedicated server based repository

for storing shared system models as well as other relevant

data. EA’s existing physical data model was used for storing

the UML models. The models are therefore standardized and

could be easily imported or shared.

Application Server – centralized server for managing

communication and synchronization among multiple clients.

Where fast real-time synchronous communication is required,

WebSockets are used and REST API was used for

communication between EA and the application server.

3D UML Application – our main tool used for real-time

synchronous collaborative system modeling and visualization

using 3D UML. In this tool, multiple users should be able to

collaborate in real-time, therefore creating UI and features

with high awareness factor were our main goal.

Enterprise Architect Add-in – integrates EA with our 3D

UML application and enhances EA with real-time

collaborative features. This also enables users to utilize EA’s

built-in features for complex system modeling that they have

already adopted.

Our 3D UML application enables users to create UML

class diagrams in 3D space collaboratively. All of the

awareness features are implemented as real-time synchronous

functionality. Therefore, any change made by one collaborator

can be instantly seen by all other users. For example, if one

collaborator is moving a UML element, all other collaborators

can see who is moving the element in real time. An example of

this can be seen on the following sequence diagram (Fig. 4).

Fig. 4. Real-time Synchronous Element Dragging Functionality

The following is a summary of all implemented

awareness features. The first implemented awareness feature is

the login notification. Consequently, after an existing or a new

user logs in, a notification is broadcasted to all other

collaborators and they are instantly notified about who joined

the workspace In multi-user workspace it is important to let

others know if a collaborator is online and prepared to work.

(Fig. 5).

Fig. 5. Login Notification

Presence Awareness Features enable a user to instantly

understand who is in the workspace, where others are working

and on what objects they are currently working. There are four

presence awareness features that were implemented and can be

seen in the figure 6. The collaborators are always aware of all

project participants (Fig. 6 - 1), on what layer they are

working (Fig. 6 - 2), on what specific element they are

working (Fig. 6 - 3), end even of the actions of others if they

are working outside of their view (Fig. 6 - 4).

Fig. 6. Presence Awareness Features

In a multi-user workspace, it is also very important to

understand not only where others are working in the present,

but also to understand the history of their actions. We present

the following feature as one possible approach to visualise the

history of user’s actions. A small flag is placed beside the

element that has been changed. The flag has the same color as

the user who modified it and fades out as it is further in

history. This enables the collaborators to see five most recent

actions of other collaborators before the flag disappears.

Furthermore, the collaborators can see what exactly has been

changed by moving the mouse over a flag (Fig. 7).

Fig. 7. User Action History

However, this feature later proved not to be as effective,

since it was very complicated to see the fading of the small

flags if they were distributed around the whole project.

Therefore, we proposed another approach how the history of

user’s actions can be visualised simultaneously with the

history of each UML class element. In this approach, a

different icon is placed on top of a UML class element for

each type of change. This enables a collaborator to find the

change he was looking for more efficiently. The icons are also

the same color as the user who made the change, which

identifies the user. A collaborator can also immediately

visualise details about the change, by placing his cursor above

the element. For example, the figure 8 (left) shows a user

viewing the most recent change of a UML class. He can

immediately see that the change has been made by the green

user and that it was made 2 minutes ago. We have also

provided a visual assistance to quickly find what exactly has

been changed. We stroked out and used red color to visualise

what has been removed and used green color to visualize what

has been added. Similarly, the figure 8 (right) shows how a

user can see a different type of change. In this example, a user

can see who has moved a UML class and when it was moved.

The red and green colors were also used to illustrate the old

and new positon of the UML class.

Fig. 8. UML Class and User Action History

The previous feature provides visual elements to show the

most recent changes of one UML class element only. The next

feature enables a user to see the history of all collaborators’

actions and simultaneously visualise the state of the whole

project in a specific time in history. We called the next feature

the project history timeline. A collaborator can simply

visualise the entire project from the initial state to the last

collaborator’s contribution. A collaborator can navigate back

and forth in history by moving the history timeline slider (Fig.

9 - 1). Each step of the slider represents one user’s action in

history. The collaborator can see more details about the action

in the history window (Fig. 9 - 2). He can see who has made

the change and when the change was made. The actual change

is highlighted directly in the UML diagram (Fig. 9 - 3).

Fig. 9. Project History Timeline (History Mode)

Figure 10 shows an example of this functionality. As the

user moves the timeline slider from the initial user’s

contribution towards the last project modification, the

collaborators’ actions are being executed and the project is

dynamically growing. New changes, performed by others, are

also being added in real-time.
 1 2

3 4

Fig. 10. Project History Timeline Functionality Example

We have implemented this functionality by logging and

creating an undo action for every action a user made (an action

is any CRUD operation, such as adding a new layer, adding a

relation between two elements, adding, removing or updating

element’s name, attribute or method). Therefore, each action

saved in history is composed of a “do” and “undo” action. If

the slider is being moved forward the “do” actions are

executed and if the slider is being moved backwards the

“undo” actions are executed. These “undo” actions are created

on the server and then broadcasted to all connected clients

with every standard user’s action. Therefore, every client

always has a local and up to date copy of the entire history of

the project. In the future we can visualise developer interaction

or use this information to predict bad smells in the model. The

local execution of selected history actions (i.e., add, remove)

can be seen in the figure 11 (moreover, modifications are also

supported similarly).

Fig. 11. Execution of History Actions (pseudocode)

One of the benefits of above features is that they

minimize the need for communication. However, there are

situations when a collaborator needs to ask for assistance or

quickly inform others about something. In these situations, a

simple chat is an efficient solution. Figure 12 shows our

implementation of chat and an example of a chat

communication between two collaborators. Other forms of

communication were also considered, such as the exchange of

comments on a specific UML element, as it is possible in EA

or audio/video chat using WebRTC. These features can be

implemented in the future, as they enable other benefits in

communication.

Fig. 12. Communication Example

By default, the chat window is not visible. This is due to

the fact, that chat is not a primary collaborative feature and it

can also cover a lot of space of the working area. However, we

have also intentionally made the chat window slightly

transparent, thus enabling the collaborator to be aware of any

actions hidden by the chat window. The user can also move

the chat to any location on screen. If the chat is closed and a

new message is received, a user is notified by a sound alert

and also a small icon with the number of new messages

appears beside the “Open chat” button (Figure 12).

Fig. 13. New Message Notification

IV. OPEN QUESTIONS AND HYPOTHESES FOR FUTURE WORK

AND EVALUATION

We have proposed a method and tool prototype for

collaborative 3D system modeling. The real-time synchronous

collaboration enables collaborators to work on one centralized

model in real-time. This eliminates the need for sharing or

merging of multiple versions of UML models. We have

proposed various visual artefacts and features which improve

the user’s present and past awareness of others and their

actions in a multi-user workspace. These aspects are used as

conversational artefacts or visual evidence to replace or

complete possible verbal communication and therefore

minimize the need for communication. In addition, by always

knowing what others are currently working on, a collaborator

can make a faster decision on choosing his next step based on

his prediction or expectation of what others will do next. This

also eliminates redundant or duplicate work. The question if

these features could help to provide faster and more efficient

system modeling has to be answered and evaluated. We have

the opportunity to do it in a new industrial insurance software

project with research background proposed by the software

company Gratex International (gratex.com or

gratexinsurance.com).

We can use this method in similar areas (not only for UML

models, but also for ontologies and domain specific language

models, etc.) or as a practice for modeling of specific

industrial standards as a pair modeling: trainer and novice in

parallel layers.

It is possible to run the collaborative 3D UML application

simply by navigating to http://uml3d.herokuapp.com and

running the prototype in multiple web browsers. A video,

which describes the functionality of the collaborative 3D UML

application, can be accessed on

https://youtu.be/ehx6HI8B_fQ.

V. ACKNOWLEDGMENT

This work was supported by the Scientific Grant Agency of

Slovak Republic (VEGA) under the grant No. VG 1/0646/15

and No. VG 1/0752/14. This contribution was created with the

support of the Ministry of Education, Science, Research and

Sport of the Slovak Republic within the Research and

Development Operational Programme for the project

“University Science Park of STU Bratislava”, ITMS

26240220084, co-funded by the ERDF.

REFERENCES

[1] A. C. Ellis, J. S. Gibbs and G. Rein, “Groupware: some issues

and experiences,” in Communications of the ACM, 1991, pp.

39-58.

[2] H. Fuks et al., “The 3c collaboration model,” in The

Encyclopedia of e-collaboration. Ned Kock (org), 2007, pp. 637-

644.

[3] P. Dourish and V. Bellotti, “Awareness and coordination in

shared workspaces,” in Proceedings of the 1992 ACM confer-

ence on Computer-supported cooperative work. New York:

ACM, 1992, pp. 107-114.

[4] C. Gutwin and S. Greenberg, “A descriptive framework of

workspace awareness for real-time groupware,” in Computer

Supported Cooperative Work (CSCW), 2002, 11.3-4, pp. 411-

446.

[5] H. Koike, “Three-dimensional software visualization: a frame-

work and its applications,” in Visual Computing. Springer,

1992, pp. 151-170.

[6] K. Casey and C. Exton, “A Java 3D implementation of a geon

based visualisation tool for UML,” in Proceedings of the 2nd in-

ternational conference on principles and practice of program-

ming in Java. Computer Science Press, 2003, pp. 63-65.

[7] T. Dwyer, “Three dimensional UML using force directed lay-

out,” in Proceedings of the 2001 Asia-Pacific symposium on in-

formation visualisation, vol. 9. Australian Computer Society,

2001, pp. 77-85.

[8] J. von Pilgrim and K. Duske, “Gef3D: a framework for two-,

two-and-a-half-, and three-dimensional graphical editors,” in

Proceedings of the 4th ACM symposium on software visualiza-

tion. New York: ACM, 2008, pp. 95-104.

[9] L. Gregorovic, I. Polasek and B. Sobota, “Software model crea-

tion with multidimensional UML,” in Confenis, WCC 2015,

Daejeon, South Korea, LNCS 9357. Springer, 2015, pp. 343-

352.

[10] A. Caudwell, “Gource: visualizing software version control

history,” in OOPSLA '10. New York: ACM, 2010, pp. 73-74.

[11] R. Minelli et al., “Visualizing Developer Interactions,” in

VISSOFT 2014, IEEE working conference on software visuali-

zation. IEEE, 2014, pp. 147-156.

[12] L. Gregorovic and I. Polasek, “Analysis and design of object-

oriented software using multidimensional UML,” in Internation-

al Conference on knowledge technologies and data-driven busi-

ness, I-KNOW '15, Graz, Austria. New York: ACM, 2015, arti-

cle no. 47.

[13] M. Bystrický and V. Vranic, “Preserving use case flows in

source code: approach, context, and challenges,” in Computer

science and information systems journal, vol. 14, no. 2, 2017,

pp. 423–445.

[14] M. Bystricky and V. Vranic, “Development Environment for

Literal Inter-Language Use Case Driven Modularization,” in

Modularity Companion 2016, Companion Proceedings of the

15th International Conference on Modularity, Demos & Posters,

March 2016, Málaga, Spain. New York: ACM, 2016, pp. 12-15.

[15] S. Liu et al., “Real-time Collaborative Software Modeling Using

UML with Rational Software Architect,” in Proceedings of

IEEE international conference on collaborative computing:

networking, applications and worksharing. IEEE, 2006, pp. 1-9.

[16] M. Arciniegas-Mendez, A. Zagalsky, M. Storey and A. F.

Hadwin, “Using the Model of Regulation to Understand

Software Development Collaboration Practices and Tool

Support,” in Proceedings of the 2017 ACM Conference on

Computer Supported Cooperative Work and Social

Computing (CSCW '17). New York: ACM, 2017, pp. 1049-

1065.

View publication stats

