Collaborative Modeling and Visualization of
Software Systems Using Multidimensional UML

Matej Ferenc, Ivan Polasek and Juraj Vincur
Faculty of Informatics and Information Technologies
Institute of Informatics and Software Engineering,
Slovak University of Technology in Bratislava
Ilkovi¢ova 2, SK-84216 Bratislava 4
{xferencm, ivan.polasek, juraj.vincur}@stuba.sk

Abstract— This paper introduces our approach to a real-time
synchronous collaborative modeling of software systems using 3D
UML in a way similar to shared Google Document online with the
aim to reduce the complexity of UML models and to increase
work efficiency. In our approach, we decided to visualize the
system with 2D UML diagrams on interconnected layers contai-
ning components (in class diagrams) or use case scenarios of the
system (in sequence or activity diagrams) in 3D space. The goal of
our method is to improve user’s awareness of other developers in
a multi-user workspace, adjust redundant components and visu-
alize the history of user’s actions in the UML class diagrams.

Index Terms—3D UML, real-time synchronous collaboration,
modeling, visualization, evolution

I. INTRODUCTION

Developing complex and large-scale software systems is a
difficult and complicated process in which many people are
involved. Multiple experts with various specializations need to
collaborate concurrently in order to analyze and design the
system. Therefore, the main motivation of this paper is to
introduce and propose our approach (and coupled tool) which
supports:

e working on a model of the software system similarly to
draw.io (https://www.draw.io) or GenMyModel
(http://mwww.genmymaodel.com) online, increasing the
productivity and work efficiency in a collaborative and
parallel modeling compared to the standard offline and
uninformed non-collaborative work,

e visualizing parallel layers (with parallel versions or
with the other collaborating components or with
particular structures, supporting other use cases) on
which other developers are working (collaborators can
work on the same layer t00),

e visualizing similar parts on the other component layers
to not reinvent the wheel and reduce the vague and
redundant elements,

e reducing of the complexity of exact and large UML
models using the layers decomposing the extensive
model to the real components,

e visualizing evolution in the model and collaboration,
controlled with timeline widget as the gource system
[10] visualizing source code evolution.

Il. RELATED WORK

Ellis, Gibbs, and Rein [1], describe collaboration using the
3C Collaboration Model which defines collaboration as an
interlay between coordination, communication and
cooperation. Fuks et. al. [2] later adopt this model and state that
awareness mediates and fosters all three aspects of
collaboration. This model can be used as a base for analyzing
and designing groupware. Dourish and Belloti [3] define
awareness as “an understanding of the activities of others,
which provides a context for one’s own activities.” Many
papers discuss the importance of user’s awareness of other’s in
a shared workspace [4][15][16]. Gutwin and Greenberg [4],
state that every collaborator should be intuitively aware of
present related aspects such as who is in the workspace, where
they are located, what they are working on, as well as past
related aspects such as how this artefact came to be in this state
or who made this change and when. They state that good
awareness provides the following benefits:

e collaborators will not miss a chance to collaborate or
oppositely, will not interrupt others at inappropriate
time,

e collaborator has a better contextual understanding of
where assistance is required,

e unnecessary need for communication is eliminated,

e collaborator can predict the others’ actions and
therefore make an easier decision on choosing their
next task,

e work redundancy is eliminated and division of labor is
simplified.

Based on the above, we can state that good awareness of
others and their activities increase work efficiency and
productivity in multi-user workspace. However, this does not
solve the problem of readability of complex and large-scale
UML models of software systems. Many research papers
propose that modeling and visualizing a system in 3D space
can eliminate this problem and introduce many improvements.
The idea of system modeling in three-dimensional space was
first published in 1991 as a Doctoral Dissertation by Koike [5].
He proposes that the increase in dimension enables to visualize
large number of objects and relations among them. Since then
many other papers have been published covering this topic. For
example, Casey et al. [6], propose an approach to visualizing

UML class diagrams as geon diagrams. He states that it is
easier for users to remember 3D geometrical shapes than text.
Another example is Dwyer’s [7] 3D UML visualization of a
class diagram, where he used force-directed algorithm to layout
UML class diagram in 3D space. In his visualization, he
represented standard 2D UML classes as 3D blocks, 2D
relationships as 3D connectors and enclosed UML classes
within the same UML package inside a sphere.

Another approach to 3D system visualization is by placing
standard 2D UML diagrams on multiple layers in 3D space.
Von Pilgrim and Duske [8] provide an example of this
approach in their research paper and present a 3D framework
called Gef3D. The framework enables to transform any
existing GEF-based 2D editors into 3D editors and enables to
visualize connections between 2D diagrams on layers in 3D
space. This topic is also being researched in our institute with
the aim to reduce complexity of UML models and to propose
other improvements of UML and use case modeling and visual-
ization [13][14]. For example, in their paper, Gregorovic and
Polasek [9][12] present an approach for automatic generation
of object and class UML diagrams from sequence UML
diagrams. In addition, they introduce automatic layout of UML
class diagrams in 3D space based on the class semantics.

Based on the previous examples and especially with the rise
of virtual and augmented reality, modeling systems in 3D space
seems to be the trend of how systems will be modelled in the
future.

I1l. OUR APPROACH

In our approach, we decided to continue visualizing the
system with 2D UML diagrams on interconnected layers (close
to the concept of 2.5D and 3D UML [8]) containing compo-
nents (in class diagrams) or use case scenarios (in sequence or
activity diagrams) of a system in 3D space. We aimed to
improve the process of UML modeling with real-time
synchronous collaboration and we have designed and
implemented a real-time collaborative 3D UML application
with many awareness features (Fig. 1).

Fig. 1. Collaborative 3D UML Application

We have also implemented an Enterprise Architect Add-in
(Fig. 2), to enable integration with EA and to enhance EA with
real-time synchronous collaboration.

000 G || A s o || 90 s |
i r-'_-.__——"‘

Fig. 2. Enterpise Architect Add-in

Figure 3 shows the architecture of our proposed method for
collaborative 3D UML modeling. Following, the architecture’s
components are briefly described.

User5

«Web Bmwser’%ﬂ E O U
|WebVR Application «Web Browser»
/'SD UML Application

User 1

WebSacket WebSocket

Application Server E
«Relational Databasen Node.js El
:;::m’r; | «Web Browser»
Real-time synchronous WebSocﬁel/'ED UML Application
¥
collab. module |t O
: Enterprise Archlt@
o [e——HTTP—>| 30 UML User2
TP REST API Collab. Add-in
JoN

HTTP

{l) \ Enterprise Architgc—r’[Q
Enterprise Architect ﬁ_:_[cm:? E’h”ﬂu-m L:-l

User 3

User 4

Fig. 3. Collaborative 3D UML Application

Relational Database — dedicated server based repository
for storing shared system models as well as other relevant
data. EA’s existing physical data model was used for storing
the UML models. The models are therefore standardized and
could be easily imported or shared.

Application Server — centralized server for managing
communication and synchronization among multiple clients.
Where fast real-time synchronous communication is required,
WebSockets are used and REST APl was used for
communication between EA and the application server.

3D UML Application — our main tool used for real-time
synchronous collaborative system modeling and visualization
using 3D UML. In this tool, multiple users should be able to
collaborate in real-time, therefore creating Ul and features
with high awareness factor were our main goal.

Enterprise Architect Add-in — integrates EA with our 3D
UML application and enhances EA with real-time
collaborative features. This also enables users to utilize EA’s
built-in features for complex system modeling that they have
already adopted.

Our 3D UML application enables users to create UML
class diagrams in 3D space collaboratively. All of the
awareness features are implemented as real-time synchronous
functionality. Therefore, any change made by one collaborator
can be instantly seen by all other users. For example, if one

collaborator is moving a UML element, all other collaborators
can see who is moving the element in real time. An example of
this can be seen on the following sequence diagram (Fig. 4).

Web Browser ‘Nods_is Saw‘ Web Browser ‘ Web Bronser ‘
UserA | |
: invoke : :
:ElementDrag() ! B
— s
loop / [while element dragging] :
emit('ElementPosition
Changed',elelD,x,y,userColor)
broadcastElement emit('ElementPaosition
Position(clientData) . Changed', clientData); |
updateElement : :
Position(serverData) ! highlightElement |

(elelD,userColor) |

i highlightElement
! (elelD,userColor)

updateElement
Position{serverData)

.
7

Fig. 4. Real-time Synchronous Element Dragging Functionality

The following is a summary of all implemented
awareness features. The first implemented awareness feature is
the login notification. Consequently, after an existing or a hnew
user logs in, a notification is broadcasted to all other
collaborators and they are instantly notified about who joined
the workspace In multi-user workspace it is important to let
others know if a collaborator is online and prepared to work.

(Fig. 5).

_— _l/

Fig. 5. Login Notification

Presence Awareness Features enable a user to instantly
understand who is in the workspace, where others are working
and on what objects they are currently working. There are four
presence awareness features that were implemented and can be
seen in the figure 6. The collaborators are always aware of all
project participants (Fig. 6 - 1), on what layer they are
working (Fig. 6 - 2), on what specific element they are
working (Fig. 6 - 3), end even of the actions of others if they
are working outside of their view (Fig. 6 - 4).

Fig. 6. Presence Awareness Features

In a multi-user workspace, it is also very important to
understand not only where others are working in the present,

but also to understand the history of their actions. We present
the following feature as one possible approach to visualise the
history of user’s actions. A small flag is placed beside the
element that has been changed. The flag has the same color as
the user who modified it and fades out as it is further in
history. This enables the collaborators to see five most recent
actions of other collaborators before the flag disappears.
Furthermore, the collaborators can see what exactly has been
changed by moving the mouse over a flag (Fig. 7).

Abhres.

R o

(o] = O e .~,_':-:_.:£:_:

Fig. 7. User Action History

However, this feature later proved not to be as effective,
since it was very complicated to see the fading of the small
flags if they were distributed around the whole project.
Therefore, we proposed another approach how the history of
user’s actions can be visualised simultaneously with the
history of each UML class element. In this approach, a
different icon is placed on top of a UML class element for
each type of change. This enables a collaborator to find the
change he was looking for more efficiently. The icons are also
the same color as the user who made the change, which
identifies the user. A collaborator can also immediately
visualise details about the change, by placing his cursor above
the element. For example, the figure 8 (left) shows a user
viewing the most recent change of a UML class. He can
immediately see that the change has been made by the green
user and that it was made 2 minutes ago. We have also
provided a visual assistance to quickly find what exactly has
been changed. We stroked out and used red color to visualise
what has been removed and used green color to visualize what
has been added. Similarly, the figure 8 (right) shows how a
user can see a different type of change. In this example, a user
can see who has moved a UML class and when it was moved.
The red and green colors were also used to illustrate the old
and new positon of the UML class.

Fig. 8. UML Class and User Action History

The previous feature provides visual elements to show the
most recent changes of one UML class element only. The next
feature enables a user to see the history of all collaborators’
actions and simultaneously visualise the state of the whole

project in a specific time in history. We called the next feature
the project history timeline. A collaborator can simply
visualise the entire project from the initial state to the last
collaborator’s contribution. A collaborator can navigate back
and forth in history by moving the history timeline slider (Fig.
9 - 1). Each step of the slider represents one user’s action in
history. The collaborator can see more details about the action
in the history window (Fig. 9 - 2). He can see who has made
the change and when the change was made. The actual change
is highlighted directly in the UML diagram (Fig. 9 - 3).

[cuse sty e |

Fig. 9. Project History Timeline (History Mode)

Figure 10 shows an example of this functionality. As the
user moves the timeline slider from the initial user’s
contribution towards the last project modification, the
collaborators’ actions are being executed and the project is
dynamically growing. New changes, performed by others, are
also being added in real-time.

1 2
— — -~ -
\ \

| |

| l

3 4

Fig. 10. Project History Timeline Functionality Example

We have implemented this functionality by logging and
creating an undo action for every action a user made (an action
is any CRUD operation, such as adding a new layer, adding a
relation between two elements, adding, removing or updating
element’s name, attribute or method). Therefore, each action
saved in history is composed of a “do” and “undo” action. If
the slider is being moved forward the “do” actions are
executed and if the slider is being moved backwards the
“undo” actions are executed. These “undo” actions are created
on the server and then broadcasted to all connected clients
with every standard user’s action. Therefore, every client
always has a local and up to date copy of the entire history of
the project. In the future we can visualise developer interaction
or use this information to predict bad smells in the model. The
local execution of selected history actions (i.e., add, remove)

can be seen in the figure 11 (moreover, modifications are also
supported similarly).

01. enter history mode

02. move history timeline slider

03. Tj(s.'."a‘er moved left)

04. get previous (undo) action from history

05. E(user added an element)

06. remove the element from the project workspace
07. else if (user removed an element)

08. add the element to the project workspace

09.| | _ highlight the element with the user’s color

10.| else if (slider moved right)
11.| getnext (do) action from history
12. if (user added an element)

13. add the element to the project workspace

14, highlight the element with the user’s color

15, else if (user removed an element)

16.| | _ remove the element from the project workspace

Fig. 11. Execution of History Actions (pseudocode)

One of the benefits of above features is that they
minimize the need for communication. However, there are
situations when a collaborator needs to ask for assistance or
quickly inform others about something. In these situations, a
simple chat is an efficient solution. Figure 12 shows our
implementation of chat and an example of a chat
communication between two collaborators. Other forms of
communication were also considered, such as the exchange of
comments on a specific UML element, as it is possible in EA
or audio/video chat using WebRTC. These features can be
implemented in the future, as they enable other benefits in
communication.

BT - E

— e ©
ol

Sy

® i F‘]
= |

A

e |

Y
\ | - A

Fig. 12. Communication Example

By default, the chat window is not visible. This is due to
the fact, that chat is not a primary collaborative feature and it
can also cover a lot of space of the working area. However, we
have also intentionally made the chat window slightly
transparent, thus enabling the collaborator to be aware of any
actions hidden by the chat window. The user can also move
the chat to any location on screen. If the chat is closed and a
new message is received, a user is notified by a sound alert
and also a small icon with the number of new messages
appears beside the “Open chat” button (Figure 12).

@ = Open Chat | [History Mode @

Fig. 13. New Message Notification

IVV. OPEN QUESTIONS AND HYPOTHESES FOR FUTURE WORK
AND EVALUATION

We have proposed a method and tool prototype for
collaborative 3D system modeling. The real-time synchronous
collaboration enables collaborators to work on one centralized
model in real-time. This eliminates the need for sharing or
merging of multiple versions of UML models. We have
proposed various visual artefacts and features which improve
the user’s present and past awareness of others and their
actions in a multi-user workspace. These aspects are used as
conversational artefacts or visual evidence to replace or
complete possible verbal communication and therefore
minimize the need for communication. In addition, by always
knowing what others are currently working on, a collaborator
can make a faster decision on choosing his next step based on
his prediction or expectation of what others will do next. This
also eliminates redundant or duplicate work. The question if
these features could help to provide faster and more efficient
system modeling has to be answered and evaluated. We have
the opportunity to do it in a new industrial insurance software
project with research background proposed by the software
company Gratex International (gratex.com or
gratexinsurance.com).

We can use this method in similar areas (not only for UML
models, but also for ontologies and domain specific language
models, etc.) or as a practice for modeling of specific
industrial standards as a pair modeling: trainer and novice in
parallel layers.

It is possible to run the collaborative 3D UML application
simply by navigating to http://uml3d.herokuapp.com and
running the prototype in multiple web browsers. A video,
which describes the functionality of the collaborative 3D UML
application, can be accessed on
https://youtu.be/ehx6HI8B_fQ.

V. ACKNOWLEDGMENT

This work was supported by the Scientific Grant Agency of
Slovak Republic (VEGA) under the grant No. VG 1/0646/15
and No. VG 1/0752/14. This contribution was created with the
support of the Ministry of Education, Science, Research and
Sport of the Slovak Republic within the Research and
Development Operational Programme for the project
“University Science Park of STU Bratislava”, ITMS
26240220084, co-funded by the ERDF.

REFERENCES

[1] A. C. Ellis, J. S. Gibbs and G. Rein, “Groupware: some issues
and experiences,” in Communications of the ACM, 1991, pp.
39-58.

[2] H. Fuks et al, “The 3c collaboration model,” in The
Encyclopedia of e-collaboration. Ned Kock (org), 2007, pp. 637-
644.

[3] P. Dourish and V. Bellotti, “Awareness and coordination in
shared workspaces,” in Proceedings of the 1992 ACM confer-
ence on Computer-supported cooperative work. New York:
ACM, 1992, pp. 107-114.

[4] C. Gutwin and S. Greenberg, “A descriptive framework of
workspace awareness for real-time groupware,” in Computer
Supported Cooperative Work (CSCW), 2002, 11.3-4, pp. 411-
446.

[5] H. Koike, “Three-dimensional software visualization: a frame-
work and its applications,” in Visual Computing. Springer,
1992, pp. 151-170.

[6] K. Casey and C. Exton, “A Java 3D implementation of a geon
based visualisation tool for UML,” in Proceedings of the 2nd in-
ternational conference on principles and practice of program-
ming in Java. Computer Science Press, 2003, pp. 63-65.

[7] T. Dwyer, “Three dimensional UML using force directed lay-
out,” in Proceedings of the 2001 Asia-Pacific symposium on in-
formation visualisation, vol. 9. Australian Computer Society,
2001, pp. 77-85.

[8] J. von Pilgrim and K. Duske, “Gef3D: a framework for two-,
two-and-a-half-, and three-dimensional graphical editors,” in
Proceedings of the 4th ACM symposium on software visualiza-
tion. New York: ACM, 2008, pp. 95-104.

[9] L. Gregorovic, I. Polasek and B. Sobota, “Software model crea-
tion with multidimensional UML,” in Confenis, WCC 2015,
Daejeon, South Korea, LNCS 9357. Springer, 2015, pp. 343-
352.

[10] A. Caudwell, “Gource: visualizing software version control
history,” in OOPSLA '10. New York: ACM, 2010, pp. 73-74.

[11] R. Minelli et al., “Visualizing Developer Interactions,” in
VISSOFT 2014, IEEE working conference on software visuali-
zation. IEEE, 2014, pp. 147-156.

[12] L. Gregorovic and I. Polasek, “Analysis and design of object-
oriented software using multidimensional UML,” in Internation-
al Conference on knowledge technologies and data-driven busi-
ness, I-KNOW '15, Graz, Austria. New York: ACM, 2015, arti-
cle no. 47.

[13] M. Bystricky and V. Vranic, “Preserving use case flows in
source code: approach, context, and challenges,” in Computer

science and information systems journal, vol. 14, no. 2, 2017,
pp. 423-445.

[14] M. Bystricky and V. Vranic, “Development Environment for
Literal Inter-Language Use Case Driven Modularization,” in
Modularity Companion 2016, Companion Proceedings of the
15th International Conference on Modularity, Demos & Posters,
March 2016, Malaga, Spain. New York: ACM, 2016, pp. 12-15.

[15] S. Liu et al., “Real-time Collaborative Software Modeling Using
UML with Rational Software Architect,” in Proceedings of
IEEE international conference on collaborative computing:
networking, applications and worksharing. IEEE, 2006, pp. 1-9.

[16] M. Arciniegas-Mendez, A. Zagalsky, M. Storey and A. F.
Hadwin, “Using the Model of Regulation to Understand
Software Development Collaboration Practices and Tool
Support,” in Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social
Computing (CSCW '17). New York: ACM, 2017, pp. 1049-
1065.

